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Abstract Lid-driven cavity flows have been widely investigated and accurate results
have been achieved as benchmarks for testing the accuracy of computational methods.
This paper verifies the accuracy of a mesh refinement method numerically using two-
dimensional steady incompressible lid-driven flows and finer meshes. The accuracy
is shown by comparing the coordinates of centres of vortices located by the mesh
refinement method with the corresponding benchmark results. The accuracy verifica-
tion shows that the mesh refinement method provides refined meshes that all centres
of vortices are contained in refined grids based on the numerical solutions of Navier-
Stokes equations solved by finite volume method except for one case. The well known
SIMPLE algorithm is employed for pressure–velocity coupling. The accuracy of the
numerical solutions is shown by comparing the profiles of horizontal and vertical com-
ponents of velocity fields with the corresponding components of the benchmarks and
also streamlines. The mesh refinement method verified in this paper can be applied to
find the accurate numerical solutions of any mathematical models containing conti-
nuity equations for incompressible fluid or steady state fluid flows or heat transfer.

Keywords Mesh refinement · Lid-driven cavity flow · Finite volume method

1 Introduction

Meshing is the process of breaking up a physical domain into smaller sub-domains
(called elements or cells or grids) in order to evaluate the numerical solutions of differ-
ential equations. Adaptive mesh refinement is a computational technique to improve
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the accuracy of numerical solutions of differential equations by starting the calcula-
tions on a coarse basic mesh (initial mesh) and then refining this mesh where less
accuracy may occur locally.

There are a large number of publications on adaptive mesh refinements and their
applications. Some of adaptive refinement methods use a refinement criterion which
is based on local truncation errors (e.g. Almgren et al. [1]; Bell et al. [2]; Berger and
Oliger [3]; Berger and Colella [4]). Other common adaptive mesh refinement methods
include h-refinement(e.g. Lohner [18]; Speares and Berzins [21]), p-refinement (e.g.
Bell et al. [2]; Zienkiewicz et al. [23]) or r -refinement (e.g. Miller and Miller [19];
Mosher [20]), with different combinations of these also possible (e.g. Capon and
Jimack [5]; Demkowicz et al. [6]). The overall aim of these adaptive algorithms is to
allow a balance to be obtained between accuracy and computational efficiency. The
h-refinement is a method where meshes are refined and/or coarsened to achieve a
prescribed accuracy and efficiency. The p-refinement is a method where the accuracy
orders are assigned to grids to achieve exponential convergence rates and r -refinement
is a method where grids are moved and redistributed to track evolving non-uniformities.
In summary, all these mesh refinement methods are proposed based on the quantitative
considerations of numerical solutions of differential equations.

We proposed adaptive mesh refinement methods from a different point of view for
2-D velocity fields (Li [14]) and for 3-D velocity fields (Li [13]) based on a theorem in
qualitative theory of differential equations (Theorem 1.14, page 18, Ye et al. [22]). The
theorem indicates that a divergence free vector field has no limit cycles or one sided
limit cycles, that is, the trajectories (or streamlines) of divergence free vector fields are
closed curves in bounded domains (singular points are streamlines). The adaptive mesh
refinement methods adaptively refine the mesh based on the information of numerical
velocity fields evaluated on it. Using numerical velocity fields obtained by taking
the vectors of the analytical velocity fields at nodes of meshes, examples showing
the accuracy of the methods include: locating the singular points and asymptotic
lines for two-dimensions [14]; the singular points and asymptotic plane for three-
dimensions [13]; and drawing closed streamlines (Li [11,12]) using the refined meshes
with a pre-specified number of refinements of the initial meshes. We have verified
that the accuracies of the proposed adaptive mesh refinement method in identifying
asymptotic line for T from 1 to 5, and identifying singular points and drawing closed
streamlines for T from 1 to 4 by two analytical velocity field examples [14]. We have
also verified that the larger the value of T , the more accurate are the location of the
asymptotic line, the coordinates of the singular points and the closed streamline [14].
Identification of accurate locations of singular points and asymptotic lines (planes),
and drawing closed streamlines are some of the accuracy measures for computational
methods.

We showed that the adaptive mesh refinement method for 2-D velocity fields pro-
vides accurate estimates for the singular points of 2-D steady incompressible lid-driven
cavity flows using the numerical velocity fields (Li and Lal [16]). The numerical veloc-
ity fields are obtained by solving the Navier–Stokes equations with the boundary con-
ditions numerically using a second order colocated finite volume method (GSFV) with
a splitting method for time discretization (Faure et al. [8]). We applied the adaptive
mesh refinement method to the initial meshes and the numerical velocity fields, and
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take the centres of refined grids in the vortex regions as the estimates of the singular
points. The comparison of the estimates with the benchmarks shows that the estimates
for the singular points are accurate.

The accuracy of the mesh refinement method using two-dimensional lid-driven
cavity flow and a different finite volume method has been established using coarser
meshes (65 × 65 for Re = 1,000 and 85 × 85 for Re = 2,500) [17]. It shows that
mesh refinement is necessary if we want the relative error of the centre coordinates
of tertiary vortices less than 40 %. This paper investigates whether mesh refinement is
needed for finer initial meshes.

2 Algorithm of mesh refinement and finite volume method

In this section, we summarize the adaptive mesh refinement method based on the
continuity equation (Li [14]) and the finite volume method used (Ferziger and Peric
[9]).

Assume that Vl = AX + B is a vector field obtained by linearly interpolating the
vectors at the three vertexes of a triangle, where

A =
(

a11 a12
a21 a22

)
, B =

(
b′

1
b′

2

)

are constant matrix and vertical vector respectively, and X = (x1, x2)
T . Vl is unique

if the area of the triangle is not zero [15]. Mass conservation for an incompressible
fluid means that

∇ · Vl = trace(A) = 0. (1)

Let f be a scalar function depending only on spatial variables. We assume that f Vl

satisfies equation (1) and then calculate the expressions of f . Li [14] gives the expres-
sions of f for the four different Jacobian forms of coefficient matrix A in Table 1. The
conditions (MC)(MC is the abbreviation of mass conservation) are the functions f in
Table 1 not equaling zero or infinity at any point on the triangular domains when f Vl

satisfies Eq. (1) on these triangular domains.
We review the algorithm of adaptive mesh refinement for quadrilateral mesh used

in this paper. The algorithm is also applicable to triangular meshes. The following grid
refinement algorithm describes how to use the conditions (MC) to refine a quadrilateral
grid in a given mesh. To avoid an infinite refinement of the mesh, we choose a pre-
specified threshold number of refinements T based on the accuracy requirements. The
algorithm of grid refinement is:

Step 1 Subdivide a quadrilateral grid into two triangles, obtain Vl by linearly inter-
polating the given numerical velocity field and check if Vl satisfies Eq. (1) on
both triangles. If yes, there is no refinement for the quadrilateral grid. If no, go
to Step 2.

Step 2 Apply the conditions (MC) to both of the triangles. If the conditions (MC)
are satisfied on both triangles, there is no refinement for the quadrilateral grid.
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Table 1 Locations of the centre of vortices

Vortex type Reynolds numbers

Re = 1,000 (99 × 99) Re = 2,500 (121 × 121) Re = 5,000 (139 × 139)

Primary vortex (0.5316, 0.5659) (0.5202, 0.5446) (0.5155, 0.5357)

(0.5300, 0.5650) (0.5200, 0.5433) (0.5150, 0.5350)

BR1 (0.8634, 0.1128) (0.8318, 0.0910) (0.8037, 0.0729)

(0.8633, 0.1117) (0.8350, 0.0917) (0.8050, 0.0733)

BL1 (0.0839, 0.0779) (0.0845, 0.1108) (0.0731, 0.1370)

(0.0833, 0.0783) (0.0850, 0.1100) (0.0733, 0.1367)

BR2 – (0.9851, 0.0056) (0.9743, 0.0201)

(0.9917, 0.0067) (0.9900, 0.0100) (0.9783, 0.0183)

BL2 (0.0075, 0.0075) (0.0090, 0.0083) (0.0079, 0.0099)

(0.0050, 0.0050) (0.0067, 0.0067) (0.0083, 0.0083)

TL1 – (0.0441, 0.8904) (0.0641, 0.9105)

– (0.0433, 0.8900) (0.0633, 0.9100)

BR3 – – (0.9397, 0.0043)

– – (0.9983, 0.0017)

Otherwise, we subdivide the grid into a number of small grids such that the
lengths of all sides of the small grids are truly reduced (e.g. connecting the
mid-points of opposite sides of a quadrilateral by line segments produces four
small quadrilaterals and the lengths of the sides of the four small quadrilaterals
are truly reduced).

The algorithm of adaptive mesh refinement is:

Step 1 Evaluate the numerical velocity field for a given initial mesh;
Step 2 Refine the grids of the mesh one by one using the above grid refinement

algorithm;
Step 3 Take the refined mesh as initial mesh and go to Step 1 until a satisfactory

numerical velocity field is obtained or the threshold number T is reached.

In Sect. 3, we use the finite volume method with SIMPLE algorithm for pressure–
velocity coupling to evaluate numerical velocity fields [9]. This finite volume method
has different arrangement for pressure–velocity from the finite volume method we
used before [8].

In this paper, we subdivide a quadrilateral by connecting the mid-points of the two
opposite sides of a quadrilateral and the threshold number T = 1, i.e., we subdivide
a cell once only for testing the accuracy of the refinement method.

3 Accuracy analysis by comparisons with benchmarks

We take the results obtained by using a mesh with 601 × 601 uniform grids, stream
function and vorticity as the benchmarks (Erturk et al. [7]). We consider the accuracy
of the mesh refinement method in the following two aspects:
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– the variations of the refined meshes according to the comparison of horizontal and
vertical profiles of the numerical velocity fields with the corresponding benchmarks.

– inclusion of the centres of vortices located in the benchmarks in the refined mesh.

3.1 Variation of refined meshes

We consider the refined meshes for two-dimensional lid-driven cavity flows for dif-
ferent mesh sizes and Reynolds number Re = 1,000, 2,500, and 5,000, respectively.
We show horizontal profiles at x = 0.5 and vertical velocity profiles at y = 0.5 as
the corresponding benchmarks are known, streamlines of Vl , and refined meshes. The
streamlines are generated by Matlab function streamline. A grid is said to be a refined
grid if a cross is drawn inside.

One of the possible comparisons is the adaptive mesh refinement which refines
everywhere that solution gradients are large (Henderson [10], 293–299). The refine-
ment criteria enforce

‖ ∇u(k) ‖≤ ε ‖ uh ‖1

everywhere in the mesh, where ‖ · ‖ is the L2 norm, ‖ · ‖1 is the H1 norm, ε is
the discretization tolerance, uh is finite-dimensional approximation for u, and k in
‖ ∇u(k) ‖ is the number of subdomains. Figure 5.7 of [10] shows the refined meshes
for ε = 10−3, 10−4, 10−5, and 10−6 for lid-driven cavity flow at Re = 1,000. Even
though there might be some relations between the refined meshes and the vorticity
field as ε decreases, no one provides any information on the pattern of the flow field
such as locations of the centres of vortices and separation curves of the regions (e.g.,
primary and secondary vortex regions).

3.1.1 Re = 1,000

We show the figures for Re = 1,000 generated from a mesh with 99 × 99 uniform
grids. From Fig. 1, the horizontal profile u of the numerical velocity field at x = 0.5
shows a slight difference with the corresponding benchmark. From Fig. 2, the vertical
profile v of the numerical velocity field at y = 0.5 fits the benchmark well. However,
the horizontal and vertical profiles reflect the local accuracy of the numerical velocity
field. The streamlines in Fig. 3 provide the global accuracy of the numerical velocity
field depending on the accuracy of streamline generation method. The streamlines in
Fig. 3 are not closed (spiral lines) so we conclude that the velocity field Vl does not
satisfy Eq. (1) [7,22] or f does not satisfy the condition (MC) on some grids in the
regions. Figure 4 shows the refined mesh. There are three isolated grids in the refined
mesh: one in the primary region and two in the secondary regions. The refined grid
in the primary regions contains the centre of primary vortex, and the isolated refined
grid on the bottom left side contains the centre of the bottom left secondary vortex,
and the isolated refined grid on the bottom right side contains the centre of the bottom
right secondary vortex (refer to Table 1). Even though the centres of tertiary vortices
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Fig. 1 Horizontal profile of
velocity field at x = 0.5 for
mesh size 99 × 99
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Fig. 2 Vertical profile of
velocity field at y = 0.5 for
mesh size 99 × 99
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are included in the refined grids, we can not identify the grids in the refined mesh.
Further mesh refinement is needed for more information on this matter.

3.1.2 Re = 2,500

We show the figures for Re = 2,500 generated from a mesh with 121 × 121 uniform
grids. From Fig. 5, the difference between the horizontal profile u of the numerical
velocity field at x = 0.5 and the corresponding benchmark is small. From Fig. 6,

123



1162 J Math Chem (2014) 52:1156–1170

Fig. 3 Streamlines for mesh
size 99 × 99
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Fig. 4 Refined mesh for Re = 1,000 with mesh size 99 × 99

the vertical profile v of the numerical velocity field at y = 0.5 fits the corresponding
benchmark well. The streamlines in the primary vortex region in Fig. 7 are almost
closed with very small errors. If the errors come from the process of generating of
streamline, we conclude that the velocity field Vl satisfies Eq. (1) or f satisfies the
condition (MC) and there is no refinement in the region. If the errors come from the
numerical velocity field, there are refinements in the region. There is no refinement
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Fig. 5 Horizontal profile of
velocity field at x = 0.5 for
mesh size 121 × 121
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Fig. 6 Vertical profile of
velocity field at y = 0.5 for
mesh size 121 × 121
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in the primary vortex region in Fig. 8 so the errors shown in Fig. 7 come from the
generation of the streamlines. The difference between the coordinates of the centre
of primary vortex from the benchmark and linearly interpolated velocity field Vl is
shown in Table 1. Even though the centre of primary vortex is not shown in Fig. 8
due to the accuracy of the linearly interpolated velocity field in the primary region,
the centre of an extra tertiary vortex is shown in the bottom right corner. The three
isolated refined grids in the two bottom corners include the centres of two secondary
and one tertiary vortices (refer to Table 1).
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Fig. 7 Streamlines for mesh
size 121 × 121
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Fig. 8 Refined mesh for Re = 2,500 with mesh size 121 × 121

3.1.3 Re = 5,000

This section shows the figures for Re = 5,000 generated from a mesh with 139 × 139
uniform grids and the analysis. Figure 9 shows the difference between the horizontal
profile u of the numerical velocity field at x = 0.5 and the corresponding benchmark.
The difference is not small. From Fig. 10, the difference between the vertical profile v

of the numerical velocity field at y = 0.5 and the corresponding benchmark is similar
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Fig. 9 Horizontal profile of
velocity field at x = 0.5 for
mesh size 139 × 139
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Fig. 10 Vertical profile of
velocity field at y = 0.5 for
mesh size 139 × 139
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to that of the profile of u. The streamlines in the primary vortex region in Fig. 11 are also
almost closed with very small errors. Combining the horizontal and vertical profiles
of the velocity field with the streamlines in the primary vortex region, we conclude
that the numerical velocity filed is not accuracy enough for a reasonable accuracy
requirement. The accuracy can be improved by increasing the mesh size. Figure 12
confirms the conclusion. As the same case as Re = 1,000, there is a refined cell in the
primary vortex region in Fig. 12. However, the refined mesh shows more complicated
structure in the corners. The isolated refined grid in the primary region contains the
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Fig. 11 Streamlines for mesh
size 139 × 139
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Fig. 12 Refined mesh for Re = 5,000 with mesh size 139 × 139

centre of primary vortex. The three isolated refined grids in the two bottom corners
include the centres of two secondary and one tertiary vortices (refer to Table 1).

3.1.4 Vortex centre locations

This subsection shows the comparison of the centres of vortices between the bench-
marks and the corresponding estimates obtained in this paper.
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Table 2 Relative errors of the estimates of vortex centres

Vortex type Reynolds numbers

Re = 1,000 (99 × 99) Re = 2,500 (121 × 121) Re = 5,000 (139 × 139)

Primary vortex 0.0024 0.0017 0.0012

BR1 0.0013 0.0039 0.0017

BL1 0.0063 0.0068 0.0023

BR2 – 0.0067 0.0045

BL2 0.5000 0.2957 0.1405

TL1 – 0.0010 0.0010

BR3 – – 0.0588

Table 1 presents that coordinates of centres of vortices in the benchmark (the second
line for each type of vortex) and the corresponding coordinates for Re = 1,000,
2,500, and 5,000 from the linearly interpolated velocity fields Vl . In this table, the
abbreviations BR, BL and TL refer to bottom right, bottom left and top left corners
of the cavity, respectively. The numbers following these abbreviations refer to the
vortices that appear in the flow, which are numbered according to size (e.g. BR1 refers
to bottom right secondary vortex, and BR2 refers to bottom right tertiary vortex, etc.).

Even though the estimate for coordinates of the centre of primary vortex for
Re = 5,000 is more accurate than that for Re = 2,500 because of the finer mesh,
the streamlines in the primary vortex region for Re = 5,000 in Fig. 11 have larger
error than those for Re = 2,500 in Fig. 7. The reason is that the coordinates of
centres of the velocity fields are estimated by the coordinates of the centres of the
linearly interpolated velocity fields Vl . The coordinates of the centre of tertiary vortex
in the bottom right corner for Re = 1,000 is not listed in Table 1 and not shown
in refined grids in Fig. 4. Further refinement may find the centre as indicated in the
examples of the analytical velocity fields [14]. Table 2 shows the relative errors of
the estimated centre locations of vortices. Except for bottom left secondary vortices
(BL2), all estimates are acceptable for relative error less than 1 %. Further refine-
ment is needed to find more accurate estimate locations of bottom left secondary
vortices.

3.2 Refined grids containing centres of vortices

We take Re = 2,500 as an example to verify if the centres of vortices are contained
in refined grids of refined mesh except the centre of the primary vortex. If the centres
of vortices are included in refined grids, further refinements of the mesh will provide
more accurate estimate locations of the centres. Figures 13, 14 and 15 show the sub
plots of bottom left, bottom right and top left corners of refined mesh for Re = 2,500.
The red dots are the centres given in the benchmark [7]. We conclude that the centres
are contained in refined grids in these enlarged sub plots clearly. Figure 13 shows
the refined mesh and the centres of vortices in region [0 0.3] × [0 0.3]. The centre
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of the secondary vortex is not located at the centre of the refined grid. Figure 14
shows the refined mesh and the centres of vortices in region [0.6 1] × [0 0.4]. The
centre of the secondary vortex is almost located at the centre of the refined grid.
Figure 15 shows the refined mesh and the centre of the secondary vortex in region
[0 0.3] × [0.7 1]. The centre of the secondary vortex is not located at the centre of
refined grid.
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Fig. 15 Sub plot of top left corn of refined mesh for Re = 2,500

4 Discussion

We considered the adaptive mesh refinement method using three cases for two dimen-
sional lid-driven cavity flows. We use horizontal and vertical profiles of velocity fields
at x = 0.5 and y = 0.5 respectively and the streamlines generated by Matlab for
determining the accuracy of the numerical velocity fields. We then consider whether
the refined meshes can locate the centres of vortices. Besides the centre of primary
vortex for Re = 2,500 which has been estimated accurately, the other centres of vor-
tices locate in the refined grids in the refined meshes. Further refinement is necessary
if we need more accurate coordinates of centres of BL2 with smaller relative errors
for these three cases.

References

1. A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, A conservative adaptive projection
method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys. 142, 1–46
(1998)

2. J. Bell, M. Berger, J. Saltzman, M. Welcome, Three-dimensional adaptive mesh refinement for hyper-
bolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)

3. M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Com-
put. Phys. 53, 484–512 (1984)

4. M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys.
82, 64–84 (1989)

5. P.J. Capon, P.K. Jimack, An adaptive finite element method for the compressible Navier-Stokes equa-
tions, in Numerical Methods for Fluid Dynamics, vol. 5, ed. by M.J. Baines, K.W. Morton (OUP,
Oxford, 1995)

6. L. Demkowicz, J.T. Oden, W. Rachwicz, O. Hardy, An h–p Taylor–Galerkin finite element method for
the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 88, 363–396 (1991)

123



1170 J Math Chem (2014) 52:1156–1170

7. E. Erturk, T.C. Corke, C. Gökcöl, Numerical solutions of 2-D steady incompressible driven cavity flow
at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

8. S. Faure, J. Laminie, R. Temam, Colocated finite volume schemes for fluid flows. Commun. Comput.
Phys. 4, 1–25 (2008)

9. J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3rd edn. (Springer, Berlin, 2002)
10. R.D. Henderson, Adaptive spectral element methods for turbulence and transition, in High-Order

Methods for Computational Physics, ed. by T.J. Barth, H. Deconinck (Springer, Berlin, 1999)
11. Z. Li, An adaptive streamline tracking method for two-dimensional CFD velocity fields based on the

law of mass conservation. J. Flow Vis. Image Process. 13, 1–14 (2006)
12. Z. Li, An adaptive streamline tracking method for three-dimensional CFD velocity fields based on the

law of mass conservation. J. Flow Vis. Image Process. 13, 359–376 (2006)
13. Z. Li, An adaptive three-dimensional mesh refinement method based on the law of mass conservation.

J. Flow Vis. Image Process. 14, 375–395 (2007)
14. Z. Li, An adaptive two-dimensional mesh refinement method based on the law of mass conservation.

J. Flow Vis. Image Process. 15, 17–33 (2008)
15. Z. Li, G. Mallinson, Mass conservative fluid flow visualisation for CFD velocity fields. KSME Int. J.

15, 1794–1800 (2001)
16. Z. Li, R. Lal, Sensitivity analysis of a mesh refinement method using the numerical solutions of 2-D

steady incompressible driven cavity flow. Submitted for publication
17. Z. Li, Accuracy analysis of an adaptive mesh refinement method using benchmarks of 2-D steady

incompressible lid-driven cavity flows. Submitted for publication
18. R. Lohner, An adaptive finite element scheme for transient problems in CFD. Comput. Methods Appl.

Mech. Eng. 61, 323–338 (1987)
19. K. Miller, R. Miller, Moving finite elements. Part I. SIAM J. Numer. Anal. 18, 1019–1032 (1981)
20. M.C. Mosher, A variable node finite element method. J. Comput. Phys. 57, 157–187 (1985)
21. W. Speares, M. Berzins, A 3-D unstructured mesh adaptation algorithm for time-dependent shock

dominated problems. Int. J. Numer. Method Fluids 25, 81–104 (1997)
22. Y. Ye et al., Theory of Limit Cycles (American Mathematical Society Press, Providence, RI, 1986)
23. O.C. Zienkiewicz, D.W. Kelly, J.P. Gago, The hierarchical concept in finite element analysis. Comput.

Struct. 16, 53–65 (1983)

123


	Accuracy analysis of a mesh refinement method using benchmarks of 2-D lid-driven cavity flows and finer meshes
	Abstract
	1 Introduction
	2 Algorithm of mesh refinement and finite volume method
	3 Accuracy analysis by comparisons with benchmarks
	3.1 Variation of refined meshes
	3.1.1 Re=1,000
	3.1.2 Re=2,500
	3.1.3 Re=5,000
	3.1.4 Vortex centre locations

	3.2 Refined grids containing centres of vortices

	4 Discussion
	References


